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Abstract

A method to deal with the two-dimensional transient problem of a line force or dislocation in an anisotropic elastic
half-space is developed. The proposed formulation is similar to Stroh’s formalism for anisotropic elastostatics in that
the two-dimensional anisotropic elastodynamic problem is cast into a six-dimensional eigenvalue problem and the solu-
tion is expressed in terms of the eigenvalues and eigenvectors. An analytic solution is obtained without performing inte-
gral transforms. Numerical examples are presented for a silicon half-space subjected to a line force or dislocation.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The propagation and reflection of waves in an elastic half-space is of practical importance in the fields of
seismology and non-destructive testing. Lamb (1904) was the first to consider the generation of elastic
waves by the application of a surface impulsive line or point force on the surface of an isotropic half-space.
He also gave the formal solutions for a buried force as integrals which were later studied by Nakano (1925)
and Lapwood (1949), among others.

The two-dimensional Lamb’s problem for a transversely isotropic half-space subjected to a surface line
force has been studied by Kraut (1963) using Cagniard’s technique. The treatment has been extended to
general anisotropic materials by Burridge (1971). Payton (1983) has obtained explicit closed form solution
for the surface displacements for transversely isotropic media. The interior response was calculated for a
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half-space of cubic symmetry by Mourad et al. (1996). Maznev and Every (1997) employed the Fourier
transform to show a functional equivalence for surface response between the time and Fourier domain.
Recently, Wu (2000) has used a Stroh-like formulation that does not require integral transform to derive
explicit solution for the displacement fields.

All of the aforementioned works on anisotropic half-spaces are for surface loading. There appear to
be few results for internal sources. Payton (1983) obtained a closed form expression for the epicenter
displacement due to a buried point force in a transversely isotropic half-space. Spies (1997) gave the
solution in the Fourier transform domain for a point force in a general anisotropic half-space. Recently
Wu (2001) derived the surface motion due to a line force or dislocation in a general anisotropic elastic
half-space.

In this paper an explicit solution is provided for the interior response due to a impulsive line force or a
line dislocation in a general anisotropic half-space. The problem of a buried force is more complicated than
that of a surface force as the former involves a characteristic length—the depth of the source. A formula-
tion developed by Wu (2000) will be extended to treat the present problem. In this formulation the solution
is expressed in terms of the eigenvalues and eigenvectors of a six-dimensional matrix, which is a function of
the material constants, time and position. A major advantage of the proposed formulation is that no inte-
gral transforms are required. This fact greatly facilitates derivations of explicit solutions.

The plan of the paper is as follows. In Section 2 the formulation is developed to treat the non-self-similar
problems. In Section 3 the formulation is applied to study the problem of a buried source in a traction-free
half-space. Numerical examples are given in Section 4. Some concluding remarks are finally given.

2. Formulation

For two-dimensional deformation in which the Cartesian components of the stress ¢; and the displace-
ment u;, i,j = 1,2,3, are independent of x3, the equations of motion are

t1 4+t = pil, (1)

where t; = (011,021,031) %, t> = (012, 022, 032)T, ii is the acceleration, p is the density, a subscript comma de-
notes partial differentiation with respect to coordinates and overhead dot designates derivative with respect
to time ¢. The stress—strain laws are

ti = Qu; + Su,, (2)
tz = STllJ + Tllg7 (3)

where the matrices Q, S, and T are related to elastic constants Cjy, by
Ou = Can, Si =Cina, Ty = Ciopa.

The equations of motion expressed in terms of displacements are obtained by substituting Eqgs. (2) and (3)
into Eq. (1) as

Qu, + (S +S"uy; + Tuy, = pii. @)
Let the displacement be assumed as u(xy, x»,7) = u(w) with the variable w(xy, x,, ) implicitly defined by
wt —x; — p(w)x, — gq(w) =0, (5)

where p(w) and ¢g(w) are functions of w. It will be shown later that p(w) is determined by Eq. (4) but ¢g(w) is
arbitrary. The special case g(w) = 0 has been discussed by Wu (2000). The first derivatives of u(w) with re-
spect to xy, X,, and ¢ can be expressed as
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ow ow . ow
u; = a—x]u (W), uy 7p(w)6_x1u (w), a= —wa—xlu (w) (6)
and the second derivatives as
ow 0 [ow 0w 0 2 oW,
w = o (w0 ). =5 (0 ) )
ow 0 ow . Oow 0 [ ,0w
- e / - - / 8
wn =g o (P S 00). =2 5 (5 )
where % is given by
ow 1
= 9)

o = p (W —q'(w)

and ‘prime’ denotes the derivative with respect to w. With Egs. (7) and (8), Eq. (4) becomes

& 10 P pS T 0TI ) | <o (10)
where I is the identity matrix. Let u’(w) be expressed as

u'(w) = f(wa(w), (11)
where f{w) is an arbitrary scalar function of w. It follows that u(w) is a solution of Eq. (4) if

D(p,w)a(w) =0, (12)
where D(p,w) is given by

D(p,w) = Q +p(S +8") + p’T — pw’L. (13)
For non-trivial solutions of a(w) we must have

ID(p,w)| =0, (14)

where |D| is the determinant of D.

Eq. (14) provides six eigenvalues of p as a function of w, denoted by pi(w), k = 1,2, ..., 6. The function
pir(w) is single-valued if w is allowed to range over the six sheets Zk of its Riemann surface, taking the val-
ues pi(w) on S°F (Willis, 1973). If w is real and |w| is sufficiently large, there are six real roots py(w) such that
(W, 2000)

dw

dp
where r, is the x, component of the ray velocity. Three of these roots characterized by dw/dp > 0 are asso-
ciated with the rays propagating in the direction of positive x, direction and the others by dw/dp <0 with
the rays propagating in the direction of negative x, direction. The three of the former type will be assigned
to the Riemann surfaces S*(k = 1,2,3) and the three of the latter type to S *(k = 4, 5,6). The sheets are
connected across appropriate lines joining the branch points of pi(w), which are located on the real axis in
the complex w-plane and are determined by dw/dp = 0. It can be shown that p;(w) has positive imaginary
part in the upper half of S>¥(k = 1,2,3) and negative imaginary part in the upper plane of > ¥(k = 4,5,6).
The variable w; = wy(x1,X», ) can then be solved from Eq. (5) by taking p(w) = pi(w).

It is obvious that if py(w) and ai(w) are, respectively, the eigenvalue and eigenvector of Eq. (12), so are

p(w) and a,(w), where the superposed bar denotes the complex conjugate. Thus from Eq. (6), the general
solution of Eq. (4) may be represented as

ra, (15)
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u(xy,x, 1)) = 2Re{ka(wk)2waak(wk)}, (16)
u(xy, X2, 1), = 2Re{ZPk(wk)ﬁ(wk)aa—‘)ffak(wk)}, (17)
U(xp, X2, 1) = _2Re{zwkﬁ(wk)2—;”fak(wk)}, (18)

where fi(wy) is an arbitrary function of w, and k = 1,2,3 or 4,5, 6. The choice of the range of k& depends on
whether up-going rays or down-going rays are considered.

By substituting Eqgs. (16) and (17) into Egs. (2) and (3), the general solutions of the stress vectors t; and t,
can be expressed as

nmmmm%;ﬁmww%%mwzwm%ﬁmﬂ} (19)

00, 1) = zRe{;wak%bk(wk)}, (20)
where

be() = (574 P (0) = = (Q = T+ p S)au(w). 1)

The second identity in Eq. (21) follows from Eq. (12). Eq. (21) can be cast into the following six-
dimensional eigenvalue problem

N(w)&(w) = p(w)§(w), (22)

where

Nl Nz ) (a(w) )
N(w) = 5 w) = 3
0= (i n) 5= (o
N =-T'S", N,=T" N;w)=ST'S"—Q+ pn’L
Eq. (22) is in the same form as that in Stroh’s formalism for steady-state motion (Stroh, 1962). Let

Aw) = [a(w) a(w) a(w)], B(w)=[bi(w) by(w) bs(w)], (23)
A(w) = [as(w) as(w) ag(w)], B(w)=[bs(w) bs(w) bg(w)]. (24)
These matrices satisfy the closure relations (Ting, 1996, p. 445)
AWAT(w) + AW)A ' (w) = 0 = B(w)BT(w) + B(w)B' (w), (25)
A(W)BT(w) + A(w)B' (w) = 1 = BO»)AT(w) + Br)A (w), (26)
if the eigenvectors &,(w), o« = 1,2, ..., 6, are normalized such that

a; (w)b;(w) + by (w)a, (w) = 3y,

where J;; is the Kronecker delta



4262 K.-C. Wu, S.-H. Chen | International Journal of Solids and Structures 43 (2006) 42584270
3. A line force and dislocation in a half-space

Consider a line force FH(¢) and a dislocation with Burgers vector BH(z), H(¢) being the unit step func-
tion, at x; =0 and x, =/ in the half-space x, > 0. The configuration is shown in Fig. 1. The boundary
conditions at x, = 0 is given by

t(x,7) =0. (27)
The resulting u and tz may be expressed as

=0 +a (28)

t, = t )+ t2 , (29)

where u° and t are respectively, the particle velocity and the stress vector due to the sources in an infinite
medium, u' and t ) are those due to the reflected waves from the free surface.

The solution for the line force in an infinite medium has been obtained by Wu (2000) and that for the line
dislocation may be derived similarly. The result is

where ¢;(w;) = af (w;)F + b (w;)B and wy is determined by
wt = x1 + p(w)(x2 — h). (32)

Egs. (30) and (31) may also be expressed in matrix form as

{Z %A Wk Ik 3 (A(Wk)TF + ﬁ(Wk)TB) }, (33)
) = — %Im{zﬁ: Wik %B(wk)lk s(A0w)"F + B(w)'B) } (34)

where I; = e;e] and e, is the unit vector in the x;-direction.

X

=

X

Fig. 1. Configuration of the problem of interest.
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From Egs. (18) and (20), let " and t(zl) be expressed as

. 1 < dw,:

u (x1,x0, 1) = - kz:; ; Im{ck(Wk.i)ka(ka) —axllq 3/(ka)}7 (35)

€ ey xa, ) = 1 i ilm (i) Ry () aWk/'b.(Wk.) (36)
2 ) B - ~ ij 7 7 axl J J 9

where wy; is determined by
wt = x1 + p;(w)xa — py(w)h (37)

and Ry; is the reflection coefficient. Note that at x, =0,

wii(x1, 1) = wi(xy, 1) (38)
and Eq. (36) becomes
€ 00) = gl {c"WV:" aa—;”l"B(wk)Rk(wk)} (39)
where Re(wy) = [Ri(wi) Rio(wi)  Rus(we)]'. Substituting Egs. (31) and (39) into Eq. (27) yields
R (wi) = =B (wi)bg(wy). (40)
The function R (wy;) can be obtained from Ry as
Rij(wij) = €] Ry (wi) = €/ R(wy;)es s, (41)
where
R(w) = —B(w) ' B(w). (42)
With Eq. (41) substituted, Eqgs. (35) and (36) can be expressed in matrix form as
d0=15 S md 2 AR A F B wp) 3)
Ti= = -
::—%Aé >t {5 B )LRowu:mKant+ﬁTwom}wa (44)

Three special cases: (a) t — oo, (b) & — 0, and (c) x, =0, are discussed as follows:

(a) For t — oo, wy; — 0 such that

ow, 1
axllq 7 wiit — z; — p(0)h
where z; = x| + p{0)x,. Eqs. (34) and (44) become
1 1
(0) 1 T T
.0 = LI {BO) N ATOF + B0}, (45)

)
0 RN 1 e T _T
ty (x1,x2,7) Zlm{ <7*_ pk(o)h>B (0)B(0)I,(A"(0)F + B (O)ﬁ)}7 (46)

1

:l
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where <H’W> is the diagonal matrix given by

A A S

z. — pi(0)h z1 = p(0)h 2y — p(0)h 23 — p(0) )

In Eqgs. (45) and (46), the following replacements have been made:
Pes(0)=p(0), k=123, A(0)=A(0),  B(0)=B(0).

Eqgs. (45) and (46) agree with the static result (Ting, 1996, pp: 261-262).
(b) When h — 0, wy; = w;, and Wk’ = iwf where w; and % W/ are given by

owy 1
axp = pi(wj)xs
Eq. (43) for p =0 can be written as

3
'V (xy,x0, 1) = ——Im{z

On the other hand, Eq. (33) with & — 0 may be expressed as

wit =x; —&-pj(wj)xz,

O)‘§

A(w))LB™( j>ﬁ<w,~>KT<wj>F}. (47)

i (5, 3,0) = —Im {Z LI 1<w,~>B(w,»>AT<wj>F}. (48)
The total velocity obtained by adding Egs. (47) and (48) is given by

, 1 > Ow; »

u(xy,xa, ) = —Im > a—xlA(W_i)I/‘B (wj)F ¢, (49)

where Eq. (26) has been used. Eq. (49) is identical with the result derived by Wu (2000) for a line force
applied on the surface of a half-space.
(c) At x, =0, the expression given by Eq. (43) may be simplified as

1 < ow, ~ ~T ~T
a (xy, 1) - Z;I {axl"A (we) B~ (W) B(wi)Li_3(A (wy)F + B (wk)B)}. (50)
The total surface response obtained by the sum of Egs. (33) and (50) is
. 1< Owg -1 AT AT
U(Xl, t) = ; ; Im{glk (B (Wk))TIk,3 (A (Wk)F + B (Wk)ﬁ)} (51)

The steps leading to Eq. (51) are given as follows:

o~ o~

Alm) — AG)B™ () BOw) = [A0r)BOw)T — AGwe)B~ () BOw) Bws)'] (Bow)T)
= [A(w)B(w)" + AGw)B™ () BOw)BOwi) | (]AS(W;{)T)71

= [A () BOw) " + A(we)B(w)J(B(w)") ™" = (B(w)") ™,

where the second line follows from Eq. (25) and the last line is a result of Eq. (26). Eq. (51) has been
obtained by Wu (2001) by a different approach.
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In summary, the particle velocity due to the line force and the dislocation given by substituting Egs. (33)
and (43) into Eq. (28) is

u(xi,x2,1) = Ge(xy,x2, 1)F + Gy (x1,x2, 1), (52)
where
G =G" +G", (53)

with G§°> and Gg) given by

1 5. dwy ~
G = —Im{z — A(wo) LA (w) }v 59
T —a X1
m_ls~y Oy
Gf :; kz:; ;Im TIA(WkJ)I R(Wk/)lk 3A (ka) ’ (55)
and
G, = GS]) + Gg)7 (56)
with GE,O) and GS) given by
o 1 5. dwy ~ = T
G, =_Im ; a—A(Wk)kasB(Wk) ) 7
18 Wi
== Z ZI { 7 A(wi)LR(wi)T; 3B (Wk/)} (58)
=4 =1

Since the velocity field due to FH(?) is the same as the displacement field due to Fd(¢),d() being the Dirac
delta function, G may also be regarded as the Green’s function for an impulsive force. Similarly Gy, is the
Green’s function due to an impulsive dislocation.

4. Numerical examples

In order to calculate the dynamic response due to a buried source, w; and wy; as a function of x;, x, and ¢
must be determined from Egs. (32) and (37), respectively. Since those functions cannot be obtained explic-
itly in general, a numerical scheme is developed as follows. Either Eq. (32) or Eq. (37) is in the following
form:

P(w) = wt —x; — p(w)xs — g(w) =0 (59)

For fixed x;, x, and ¢, expand ¢(w) about some trial value wy up to the second order term by Taylor’s
series,

600 = b+ (22) w3 (29) (awy (60

where Aw = w—wy, and (f)o = f{wp). An approximate solution of Aw can be obtained by substituting Eq.
(60) into Eq. (59) as

=(-b+ vbz—ac)/a (61)
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where «a, b, and ¢ are given by
a=—p"(wo)xs —q"(wo), b=1—p'(wo)xs —q'(wo), ¢ =2¢,.

Let wy = wo + Aw. If |p(w;)| <€, where € is a preset error, then w; is accepted as the solution of w for given
X1, X, and ¢. Otherwise Eq. (61) is used again with wq replaced by wy. The process is repeated until the error
criterion is met.

In the numerical examples the Green’s functions are expressed in the following dimensionless form:

h
Gf(n,m,‘c) = npcOth(xlvxb t)a Gb(n,m,‘c) = i Gb(xlaxbt) (62)
Co

n=1,m=05
\ .
i PP
S
_ P
(Gf)lz 0 -
-0.4 PS s

0 0.4 0.8 12 1.6 2
ht/r

Fig. 2. (Gy),, for the isotropic material at n =1 and m =0.5.

0.8 P PP

E ss
0.4 PS

| P

(Gf)ZZ 0 - n=1,m=05
s
-0.4 —
-0.8
T I T I T I T I T 1

0 04 0.8 12 1.6 2
ht/r

Fig. 3. (Gy),, for the isotropic material at n =1 and m =0.5.
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where n = x;/h,m = x,/h,t = tcy/h,co = \/Cas/p. Some components of Gy and Gy, for fixed values of
n and m, were calculated as a function of /ht/r for an isotropic material and as a function of t for an
anisotropic silicon crystal. For the isotropic material, the ratio of the speeds of the longitudinal wave
(P-wave) and transverse wave (S-wave) was taken as v/3. The elastic constants of silicon used for calcula-
tions were C;; = 165 GPa, Cj, = 63 GPa and Cyq = 79 GPa with respect to the symmetry axes. The coor-
dinate axes were chosen such that the (xi,x3)-plane was on the (111) surface and the x;-axis was in the
[110] direction. In all the figures presented sharp peaks correspond to singularities arising from the wave
arrivals.

Figs. 2 and 3 show (Gy),, and (Gy),,, respectively, for the isotropic material at n =1 and m = 0.5. The
components (Gy),, and (Gr),,, respectively, correspond to the horizontal and vertical displacements due to
a unit vertical force. The arrivals of direct P-wave and S-wave are indicated by P and S. The arrivals of the

2 —_
1.6
1.2 P
X
ot ] S
0.8
| S,
0.4+
O T I T I T I T I T I
0 0.4 0.8 1.2 16 2

X,/ Cit

Fig. 4. The wave surface in an infinite medium of silicon.

sP

n=16,m=12

$S,

Fig. 5. (Gy),, for silicon at n=1.6 and m = 1.2.
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reflected P-wave and S-wave due to the incident P-wave are indicated, respectively, by PP and PS; those due
to the incident S-wave are indicated by SP and SS. The result is in close agreement with that in (Su and
Farris, 1994).

Fig. 4 displays the wave surface in an infinite medium of silicon. The wave surface consists of three wave
fronts: one corresponding to quasi-longitudinal P-wave and two corresponding to quasi-shear S;-wave and
S,-wave. Figs. 5 and 6 show (Gy),, and (Gy),,, respectively, for silicon at n=1.6 and m = 1.2. The com-
ponents (Gy),, and (Gy),,, respectively, are the horizontal displacement and vertical displacement due to a
line impulse in the vertical direction. Figs. 7 and 8 show (Gy),, and (Gy),,, respectively, for silicon at
n=1.3 and m=1.2. The components (Gy),, and (Gy),,, respectively, are the horizontal displacement
and vertical displacement due to a line dislocation of a unit Burgers vector in the horizontal direction.
In Figs. 5-8, the arrivals of three direct waves are indicated by P, S;, and S,. The arrivals of the reflected

2_
PP S
] n=16,m=12
S,
154
SS
1_
(@) PS:
T sy ps, |\
SS,
0.5
| P SS,
SP
0_
] T I T I T I T
0 1 2 3
T

Fig. 6. (Gp),, for silicon at n = 1.6 and m = 1.2.

n=13,m=12

1 PP

Fig. 7. (Gy),, for silicon at n=1.3 and m = 1.2.
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Fig. 8. (Gy),, for silicon at n=1.3 and m=1.2.

waves due to the incident P-wave are indicated by PP, PS;, PS,. The arrivals of the reflected waves due to
the incident S; and S, waves are indicated in a similar way. It is seen that all wave arrivals are accurately
captured.

5. Conclusion

The formulation developed by Wu (2000) is generalized to treat buried dynamic sources in an aniso-
tropic elastic half-space. The displacement or traction fields in time domain have been obtained without
using integral transforms. The numerical results show that the dynamic responses can be efficiently calcu-
lated and the complicated wave phenomena accurately captured.
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