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Abstract

A method to deal with the two-dimensional transient problem of a line force or dislocation in an anisotropic elastic
half-space is developed. The proposed formulation is similar to Stroh�s formalism for anisotropic elastostatics in that
the two-dimensional anisotropic elastodynamic problem is cast into a six-dimensional eigenvalue problem and the solu-
tion is expressed in terms of the eigenvalues and eigenvectors. An analytic solution is obtained without performing inte-
gral transforms. Numerical examples are presented for a silicon half-space subjected to a line force or dislocation.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The propagation and reflection of waves in an elastic half-space is of practical importance in the fields of
seismology and non-destructive testing. Lamb (1904) was the first to consider the generation of elastic
waves by the application of a surface impulsive line or point force on the surface of an isotropic half-space.
He also gave the formal solutions for a buried force as integrals which were later studied by Nakano (1925)
and Lapwood (1949), among others.

The two-dimensional Lamb�s problem for a transversely isotropic half-space subjected to a surface line
force has been studied by Kraut (1963) using Cagniard�s technique. The treatment has been extended to
general anisotropic materials by Burridge (1971). Payton (1983) has obtained explicit closed form solution
for the surface displacements for transversely isotropic media. The interior response was calculated for a
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half-space of cubic symmetry by Mourad et al. (1996). Maznev and Every (1997) employed the Fourier
transform to show a functional equivalence for surface response between the time and Fourier domain.
Recently, Wu (2000) has used a Stroh-like formulation that does not require integral transform to derive
explicit solution for the displacement fields.

All of the aforementioned works on anisotropic half-spaces are for surface loading. There appear to
be few results for internal sources. Payton (1983) obtained a closed form expression for the epicenter
displacement due to a buried point force in a transversely isotropic half-space. Spies (1997) gave the
solution in the Fourier transform domain for a point force in a general anisotropic half-space. Recently
Wu (2001) derived the surface motion due to a line force or dislocation in a general anisotropic elastic
half-space.

In this paper an explicit solution is provided for the interior response due to a impulsive line force or a
line dislocation in a general anisotropic half-space. The problem of a buried force is more complicated than
that of a surface force as the former involves a characteristic length—the depth of the source. A formula-
tion developed by Wu (2000) will be extended to treat the present problem. In this formulation the solution
is expressed in terms of the eigenvalues and eigenvectors of a six-dimensional matrix, which is a function of
the material constants, time and position. A major advantage of the proposed formulation is that no inte-
gral transforms are required. This fact greatly facilitates derivations of explicit solutions.

The plan of the paper is as follows. In Section 2 the formulation is developed to treat the non-self-similar
problems. In Section 3 the formulation is applied to study the problem of a buried source in a traction-free
half-space. Numerical examples are given in Section 4. Some concluding remarks are finally given.
2. Formulation

For two-dimensional deformation in which the Cartesian components of the stress rij and the displace-
ment ui, i, j = 1,2,3, are independent of x3, the equations of motion are
t1;1 þ t2;2 ¼ q€u; ð1Þ
where t1 = (r11,r21,r31)T, t2 = (r12,r22,r32)T, €u is the acceleration, q is the density, a subscript comma de-
notes partial differentiation with respect to coordinates and overhead dot designates derivative with respect
to time t. The stress–strain laws are
t1 ¼ Qu;1 þ Su;2; ð2Þ
t2 ¼ STu;1 þ Tu;2; ð3Þ
where the matrices Q, S, and T are related to elastic constants Cijks by
Qik ¼ Ci1k1; Sik ¼ Ci1k2; T ik ¼ Ci2k2.
The equations of motion expressed in terms of displacements are obtained by substituting Eqs. (2) and (3)
into Eq. (1) as
Qu;11 þ ðSþ STÞu;12 þ Tu;22 ¼ q€u. ð4Þ
Let the displacement be assumed as u(x1,x2, t) = u(w) with the variable w(x1,x2, t) implicitly defined by
wt � x1 � pðwÞx2 � qðwÞ ¼ 0; ð5Þ

where p(w) and q(w) are functions of w. It will be shown later that p(w) is determined by Eq. (4) but q(w) is
arbitrary. The special case q(w) = 0 has been discussed by Wu (2000). The first derivatives of u(w) with re-
spect to x1, x2, and t can be expressed as
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u;1 ¼
ow
ox1

u0ðwÞ; u;2 ¼ pðwÞ ow
ox1

u0ðwÞ; _u ¼ �w
ow
ox1

u0ðwÞ ð6Þ
and the second derivatives as
u;11 ¼
ow
ox1

o

ow
ow
ox1

u0ðwÞ
� �

; u;22 ¼
ow
ox1

o

ow
pðwÞ2 ow

ox1

u0ðwÞ
� �

; ð7Þ

u;12 ¼
ow
ox1

o

ow
pðwÞ ow

ox1

u0ðwÞ
� �

; €u ¼ ow
ox1

o

ow
w2 ow

ox1

u0ðwÞ
� �

; ð8Þ
where ow
ox1

is given by
ow
ox1

¼ 1

t � p0ðwÞx2 � q0ðwÞ ð9Þ
and �prime� denotes the derivative with respect to w. With Eqs. (7) and (8), Eq. (4) becomes
ow
ox1

o

ow
½Q� qw2Iþ pðwÞðSþ STÞ þ pðwÞ2T� ow

ox1

u0ðwÞ
� �

¼ 0; ð10Þ
where I is the identity matrix. Let u 0(w) be expressed as
u0ðwÞ ¼ f ðwÞaðwÞ; ð11Þ

where f(w) is an arbitrary scalar function of w. It follows that u(w) is a solution of Eq. (4) if
Dðp;wÞaðwÞ ¼ 0; ð12Þ

where D(p,w) is given by
Dðp;wÞ ¼ Qþ pðSþ STÞ þ p2T� qw2I. ð13Þ

For non-trivial solutions of a(w) we must have
jDðp;wÞj ¼ 0; ð14Þ

where jDj is the determinant of D.

Eq. (14) provides six eigenvalues of p as a function of w, denoted by pk(w), k = 1,2, . . . , 6. The function
pk(w) is single-valued if w is allowed to range over the six sheets

Pk of its Riemann surface, taking the val-
ues pk(w) on

Pk (Willis, 1973). If w is real and jwj is sufficiently large, there are six real roots pk(w) such that
(Wu, 2000)
dw
dp
¼ r2; ð15Þ
where r2 is the x2 component of the ray velocity. Three of these roots characterized by dw/dp > 0 are asso-
ciated with the rays propagating in the direction of positive x2 direction and the others by dw/dp < 0 with
the rays propagating in the direction of negative x2 direction. The three of the former type will be assigned
to the Riemann surfaces

Pkðk ¼ 1; 2; 3Þ and the three of the latter type to
Pkðk ¼ 4; 5; 6Þ. The sheets are

connected across appropriate lines joining the branch points of pk(w), which are located on the real axis in
the complex w-plane and are determined by dw/dp = 0. It can be shown that pk(w) has positive imaginary
part in the upper half of

Pkðk ¼ 1; 2; 3Þ and negative imaginary part in the upper plane of
Pkðk ¼ 4; 5; 6Þ.

The variable wk = wk(x1,x2, t) can then be solved from Eq. (5) by taking p(w) = pk(w).
It is obvious that if pk(w) and ak(w) are, respectively, the eigenvalue and eigenvector of Eq. (12), so are

pkðwÞ and akðwÞ, where the superposed bar denotes the complex conjugate. Thus from Eq. (6), the general
solution of Eq. (4) may be represented as
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uðx1; x2; tÞ;1 ¼ 2Re
X

k

fkðwkÞ
owk

ox1

akðwkÞ
( )

; ð16Þ

uðx1; x2; tÞ;2 ¼ 2Re
X

k

P kðwkÞfkðwkÞ
owk

ox1

akðwkÞ
( )

; ð17Þ

_uðx1; x2; tÞ ¼ �2Re
X

k

wkfkðwkÞ
owk

ox1

akðwkÞ
( )

; ð18Þ
where fk(wk) is an arbitrary function of wk and k = 1,2,3 or 4,5,6. The choice of the range of k depends on
whether up-going rays or down-going rays are considered.

By substituting Eqs. (16) and (17) into Eqs. (2) and (3), the general solutions of the stress vectors t1 and t2

can be expressed as
t1ðx1; x2; tÞ ¼ 2Re
X

k

fkðwkÞ qw2
k

owk

ox1

akðwkÞ � pkðwkÞ
owk

ox1

bkðwkÞ
� �( )

; ð19Þ

t2ðx1; x2; tÞ ¼ 2Re
X

k

fkðwkÞ
owk

ox1

bkðwkÞ
( )

; ð20Þ
where
bkðwÞ ¼ ðST þ pkðwÞTÞakðwÞ ¼ �
1

p
ðQ� qw2Iþ pkðwÞSÞakðwÞ. ð21Þ
The second identity in Eq. (21) follows from Eq. (12). Eq. (21) can be cast into the following six-
dimensional eigenvalue problem
NðwÞnðwÞ ¼ pðwÞnðwÞ; ð22Þ

where
NðwÞ ¼
N1 N2

N3ðwÞ NT
1

� �
; nðwÞ ¼

aðwÞ
bðwÞ

� �
;

N1 ¼ �T�1ST; N2 ¼ T�1; N3ðwÞ ¼ ST�1ST �Qþ qw2I.
Eq. (22) is in the same form as that in Stroh�s formalism for steady-state motion (Stroh, 1962). Let
AðwÞ ¼ a1ðwÞ a2ðwÞ a3ðwÞ½ �; BðwÞ ¼ b1ðwÞ b2ðwÞ b3ðwÞ½ �; ð23ÞbAðwÞ ¼ a4ðwÞ a5ðwÞ a6ðwÞ½ �; bBðwÞ ¼ b4ðwÞ b5ðwÞ b6ðwÞ½ �. ð24Þ
These matrices satisfy the closure relations (Ting, 1996, p. 445)
AðwÞATðwÞ þ bAðwÞbAT
ðwÞ ¼ 0 ¼ BðwÞBTðwÞ þ bBðwÞbBT

ðwÞ; ð25Þ

AðwÞBTðwÞ þ bAðwÞbBT
ðwÞ ¼ I ¼ BðwÞATðwÞ þ bBðwÞbAT

ðwÞ; ð26Þ
if the eigenvectors na(w), a = 1,2, . . ., 6, are normalized such that
aT
k ðwÞbjðwÞ þ bT

k ðwÞajðwÞ ¼ dkj;
where dkj is the Kronecker delta
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3. A line force and dislocation in a half-space

Consider a line force FH(t) and a dislocation with Burgers vector bH(t), H(t) being the unit step func-
tion, at x1 = 0 and x2 = h in the half-space x2 P 0. The configuration is shown in Fig. 1. The boundary
conditions at x2 = 0 is given by
t2ðx1; tÞ ¼ 0. ð27Þ

The resulting _u and t2 may be expressed as
_u ¼ _uð0Þ þ _uð1Þ; ð28Þ
t2 ¼ t

ð0Þ
2 þ t

ð1Þ
2 ; ð29Þ
where _uð0Þ and t
ð0Þ
2 are, respectively, the particle velocity and the stress vector due to the sources in an infinite

medium, _uð1Þ and t
ð1Þ
2 are those due to the reflected waves from the free surface.

The solution for the line force in an infinite medium has been obtained by Wu (2000) and that for the line
dislocation may be derived similarly. The result is
_uð0Þ ¼ 1

p
Im

X6

k¼4

ckðwkÞ
owk

ox1

akðwkÞ
( )

; ð30Þ

t
ð0Þ
2 ¼ �

1

p
Im

X6

k¼4

ckðwkÞ
wk

owk

ox1

bkðwkÞ
( )

; ð31Þ
where ckðwkÞ ¼ aT
k ðwkÞFþ bT

k ðwkÞb and wk is determined by
wt ¼ x1 þ pkðwÞðx2 � hÞ. ð32Þ
Eqs. (30) and (31) may also be expressed in matrix form as
_uð0Þ ¼ 1

p
Im

X6

k¼4

owk

ox1

bAðwkÞIk�3
bAðwkÞTFþ bBðwkÞTb
� 	( )

; ð33Þ

t
ð0Þ
2 ¼ �

1

p
Im

X6

k¼4

1

wk

owk

ox1

bBðwkÞIk�3
bAðwkÞTFþ bBðwkÞTb
� 	( )

; ð34Þ
where Ik ¼ ekeT
k and ek is the unit vector in the xk-direction.
2x
F

β
h

1x

Fig. 1. Configuration of the problem of interest.



K.-C. Wu, S.-H. Chen / International Journal of Solids and Structures 43 (2006) 4258–4270 4263
From Eqs. (18) and (20), let _uð1Þ and t
ð1Þ
2 be expressed as
_uð1Þðx1; x2; tÞ ¼
1

p

X6

k¼4

X3

j¼1

Im ckðwkjÞRkjðwkjÞ
owkj

ox1

ajðwkjÞ
� �

; ð35Þ

t
ð1Þ
2 ðx1; x2; tÞ ¼ �

1

p

X6

k¼4

X3

j¼1

Im
ckðwkjÞ

wkj
RkjðwkjÞ

owkj

ox1

bjðwkjÞ
� �

; ð36Þ
where wkj is determined by
wt ¼ x1 þ pjðwÞx2 � pkðwÞh ð37Þ
and Rkj is the reflection coefficient. Note that at x2 = 0,
wkjðx1; tÞ ¼ wkðx1; tÞ ð38Þ

and Eq. (36) becomes
t
ð1Þ
2 ðx1; tÞ ¼ �

1

p

X6

k¼4

Im
ckðwkÞ

wk

owk

ox1

BðwkÞRkðwkÞ
� �

; ð39Þ
where Rk(wk) = [Rk1(wk) Rk2(wk) Rk3(wk)]T. Substituting Eqs. (31) and (39) into Eq. (27) yields
RkðwkÞ ¼ �B�1ðwkÞbkðwkÞ. ð40Þ

The function Rkj(wkj) can be obtained from Rk as
RkjðwkjÞ ¼ eT
j RkðwkjÞ ¼ eT

j RðwkjÞek�3; ð41Þ
where
RðwÞ ¼ �BðwÞ�1bBðwÞ. ð42Þ

With Eq. (41) substituted, Eqs. (35) and (36) can be expressed in matrix form as
_uð1Þ ¼ 1

p

X6

k¼4

X3

j¼1

Im
ow
ox1

AðwÞIjRðwÞIk�3ðbAT
ðwÞFþ bBT

ðwÞbÞ
� �

w¼wkj

; ð43Þ

t
ð1Þ
2 ¼ �

1

p

X6

k¼4

X3

j¼1

Im
1

w
ow
ox1

BðwÞIjRðwÞIk�3ðbAT
ðwÞFþ bBT

ðwÞbÞ
� �

w¼wkj

. ð44Þ
Three special cases: (a) t!1, (b) h! 0, and (c) x2 = 0, are discussed as follows:

(a) For t!1, wkj! 0 such that
owkj

ox1

! 1

t
; wkjt! zj � pkð0Þh
where zj = x1 + pj(0)x2. Eqs. (34) and (44) become
t
ð0Þ
2 ðx1; x2; tÞ ¼

1

p
Im Bð0Þ 1

z� � p�ð0Þh


 �
ðATð0ÞFþ BTð0ÞbÞ

� �
; ð45Þ

t
ð1Þ
2 ðx1; x2; tÞ ¼

1

p

X3

k¼1

Im Bð0Þ 1

z� � �pkð0Þh


 �
B�1ð0ÞBð0ÞIkð�A

Tð0ÞFþ B
Tð0ÞbÞ

� �
; ð46Þ
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where 1
z��pkð0Þh

D E
is the diagonal matrix given by
1

z� � pkð0Þh


 �
¼ diag

1

z1 � pkð0Þh
;

1

z2 � pkð0Þh
;

1

z3 � pkð0Þh

� �
.

In Eqs. (45) and (46), the following replacements have been made:
pkþ3ð0Þ ¼ �pkð0Þ; k ¼ 1; 2; 3; bAð0Þ ¼ Að0Þ; bBð0Þ ¼ Bð0Þ.

Eqs. (45) and (46) agree with the static result (Ting, 1996, pp: 261–262).

(b) When h! 0, wkj = wj, and
owkj

ox1
¼ owj

ox1
where wj and

owj

ox1
are given by
wjt ¼ x1 þ pjðwjÞx2;
owj

ox1

¼ 1

t � p0jðwjÞx2

.

Eq. (43) for b = 0 can be written as
_uð1Þðx1; x2; tÞ ¼ �
1

p
Im

X3

j¼1

owj

ox1

AðwjÞIjB
�1ðwjÞbBðwjÞbAT

ðwjÞF
( )

. ð47Þ
On the other hand, Eq. (33) with h! 0 may be expressed as
_uð0Þðx1; x2; tÞ ¼ �
1

p
Im

X3

j¼1

owj

ox1

AðwjÞIjB
�1ðwjÞBðwjÞATðwjÞF

( )
. ð48Þ
The total velocity obtained by adding Eqs. (47) and (48) is given by
_uðx1; x2; tÞ ¼ �
1

p
Im

X3

j¼1

owj

ox1

AðwjÞIjB
�1ðwjÞF

( )
; ð49Þ
where Eq. (26) has been used. Eq. (49) is identical with the result derived by Wu (2000) for a line force
applied on the surface of a half-space.

(c) At x2 = 0, the expression given by Eq. (43) may be simplified as
_uð1Þðx1; tÞ ¼ �
1

p

X6

k¼4

Im
owk

ox1

AðwkÞB�1ðwkÞbBðwkÞIk�3ðbAT
ðwkÞFþ bBT

ðwkÞbÞ
� �

. ð50Þ
The total surface response obtained by the sum of Eqs. (33) and (50) is
_uðx1; tÞ ¼
1

p

X6

k¼4

Im
owk

ox1

ðB̂�1ðwkÞÞTIk�3ðÂ
TðwkÞFþ bBT

ðwkÞbÞ
� �

. ð51Þ
The steps leading to Eq. (51) are given as follows:
bAðwkÞ � AðwkÞB�1ðwkÞbBðwkÞ ¼ bAðwkÞbBðwkÞT � AðwkÞB�1ðwkÞbBðwkÞbBðwkÞT
h i bBðwkÞT

� 	�1

¼ bAðwkÞbBðwkÞT þ AðwkÞB�1ðwkÞBðwkÞBðwkÞT
h i bBðwkÞT

� 	�1

¼ ½bAðwkÞbBðwkÞT þ AðwkÞBðwkÞT�ðbBðwkÞTÞ�1 ¼ ðbBðwkÞTÞ�1
;

where the second line follows from Eq. (25) and the last line is a result of Eq. (26). Eq. (51) has been
obtained by Wu (2001) by a different approach.
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In summary, the particle velocity due to the line force and the dislocation given by substituting Eqs. (33)
and (43) into Eq. (28) is
_uðx1; x2; tÞ ¼ Gfðx1; x2; tÞFþGbðx1; x2; tÞb; ð52Þ

where
Gf ¼ G
ð0Þ
f þG

ð1Þ
f ; ð53Þ
with G
ð0Þ
f and G

ð1Þ
f given by
G
ð0Þ
f ¼

1

p
Im

X6

k¼4

owk

ox1

bAðwkÞIk�3
bAðwkÞT

( )
; ð54Þ

G
ð1Þ
f ¼

1

p

X6

k¼4

X3

j¼1

Im
owkj

ox1

AðwkjÞIjRðwkjÞIk�3
bAT
ðwkjÞ

� �
; ð55Þ
and
Gb ¼ G
ð0Þ
b þG

ð1Þ
b ; ð56Þ
with G
ð0Þ
b and G

ð1Þ
b given by
G
ð0Þ
b ¼

1

p
Im

X6

k¼4

owk

ox1

bAðwkÞIk�3
bBðwkÞT

( )
; ð57Þ

G
ð1Þ
b ¼

1

p

X6

k¼4

X3

j¼1

Im
owkj

ox1

AðwkjÞIjRðwkjÞIk�3
bBT
ðwkjÞ

� �
. ð58Þ
Since the velocity field due to FH(t) is the same as the displacement field due to Fd(t),d( ) being the Dirac
delta function, Gf may also be regarded as the Green�s function for an impulsive force. Similarly Gb is the
Green�s function due to an impulsive dislocation.
4. Numerical examples

In order to calculate the dynamic response due to a buried source, wk and wkj as a function of x1, x2 and t

must be determined from Eqs. (32) and (37), respectively. Since those functions cannot be obtained explic-
itly in general, a numerical scheme is developed as follows. Either Eq. (32) or Eq. (37) is in the following
form:
/ðwÞ ¼ wt � x1 � pðwÞx2 � qðwÞ ¼ 0 ð59Þ

For fixed x1, x2 and t, expand /(w) about some trial value w0 up to the second order term by Taylor�s
series,
/ðwÞ � /0 þ
o/
ow

� �
0

Dwþ 1

2

o2/
ow2

� �
0

ðDwÞ2 ð60Þ
where Dw = w�w0, and (f)0 = f(w0). An approximate solution of Dw can be obtained by substituting Eq.
(60) into Eq. (59) as
Dw ¼ ð�bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p
Þ=a ð61Þ
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where a, b, and c are given by
a ¼ �p00ðw0Þx2 � q00ðw0Þ; b ¼ t � p0ðw0Þx2 � q0ðw0Þ; c ¼ 2/0.
Let w1 = w0 + Dw. If j/(w1)j < �, where � is a preset error, then w1 is accepted as the solution of w for given
x1, x2 and t. Otherwise Eq. (61) is used again with w0 replaced by w1. The process is repeated until the error
criterion is met.

In the numerical examples the Green�s functions are expressed in the following dimensionless form:
Gfðn;m; sÞ ¼ pqc0hGfðx1; x2; tÞ; Gbðn;m; sÞ ¼
ph
c0

Gbðx1; x2; tÞ ð62Þ
0 0.4 0.8 1.2 1.6 2
hτ / r

-0.4
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0.4

( Gf )12

n = 1 , m = 0.5 
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S
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SS

Fig. 2. ðGf Þ12 for the isotropic material at n = 1 and m = 0.5.
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Fig. 3. ðGf Þ22 for the isotropic material at n = 1 and m = 0.5.
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where n ¼ x1=h;m ¼ x2=h; s ¼ tc0=h; c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C44=q

p
. Some components of Gf and Gb, for fixed values of

n and m, were calculated as a function of hs/r for an isotropic material and as a function of s for an
anisotropic silicon crystal. For the isotropic material, the ratio of the speeds of the longitudinal wave
(P-wave) and transverse wave (S-wave) was taken as

ffiffiffi
3
p

. The elastic constants of silicon used for calcula-
tions were C11 = 165 GPa, C12 = 63 GPa and C44 = 79 GPa with respect to the symmetry axes. The coor-
dinate axes were chosen such that the (x1,x3)-plane was on the (111) surface and the x1-axis was in the
½1�10� direction. In all the figures presented sharp peaks correspond to singularities arising from the wave
arrivals.

Figs. 2 and 3 show ðGfÞ12 and ðGfÞ22, respectively, for the isotropic material at n = 1 and m = 0.5. The
components ðGfÞ12 and ðGfÞ22, respectively, correspond to the horizontal and vertical displacements due to
a unit vertical force. The arrivals of direct P-wave and S-wave are indicated by P and S. The arrivals of the
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Fig. 4. The wave surface in an infinite medium of silicon.

0 1 2
τ

3

-0.8

-0.4

0

0.4

0.8

( Gf )12

P

S1

PP

S2

S1P

PS1

S2P

PS2

S1S1

S2S1

S1S2

S2S2

n = 1.6 , m = 1.2
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reflected P-wave and S-wave due to the incident P-wave are indicated, respectively, by PP and PS; those due
to the incident S-wave are indicated by SP and SS. The result is in close agreement with that in (Su and
Farris, 1994).

Fig. 4 displays the wave surface in an infinite medium of silicon. The wave surface consists of three wave
fronts: one corresponding to quasi-longitudinal P-wave and two corresponding to quasi-shear S1-wave and
S2-wave. Figs. 5 and 6 show ðGfÞ12 and ðGfÞ22, respectively, for silicon at n = 1.6 and m = 1.2. The com-
ponents ðGfÞ12 and ðGfÞ22, respectively, are the horizontal displacement and vertical displacement due to a
line impulse in the vertical direction. Figs. 7 and 8 show ðGbÞ11 and ðGbÞ21, respectively, for silicon at
n = 1.3 and m = 1.2. The components ðGbÞ11 and ðGbÞ21, respectively, are the horizontal displacement
and vertical displacement due to a line dislocation of a unit Burgers vector in the horizontal direction.
In Figs. 5–8, the arrivals of three direct waves are indicated by P, S1, and S2. The arrivals of the reflected
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Fig. 6. ðGf Þ22 for silicon at n = 1.6 and m = 1.2.

0 1 2 3
τ

-3

-2

-1

0

1

2

( Gb )11

P

S1

S2

PP

S1P

PS1

S2P

PS2

S1S1

S2S1

S1S2

S2S2

n = 1.3 , m  = 1.2

Fig. 7. ðGbÞ11 for silicon at n = 1.3 and m = 1.2.
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waves due to the incident P-wave are indicated by PP, PS1, PS2. The arrivals of the reflected waves due to
the incident S1 and S2 waves are indicated in a similar way. It is seen that all wave arrivals are accurately
captured.
5. Conclusion

The formulation developed by Wu (2000) is generalized to treat buried dynamic sources in an aniso-
tropic elastic half-space. The displacement or traction fields in time domain have been obtained without
using integral transforms. The numerical results show that the dynamic responses can be efficiently calcu-
lated and the complicated wave phenomena accurately captured.
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